
NISTIR 4436A 11 10 3 7122SS

5LICA1 !OIMv3>

IP

The Depot A Framework for

SharingSoflware Installat'on

Across Organizational and UNIX

Platform Boundaries

Kenneth L. Manheimer

Integrated Systems Group

Factory Automation Division

Stephen N. Clark

Product Data Engineering Group

Factory Automation Group

Barry A. Warsaw

Century Computing, Inc.

1014 West Street

Laurel, MD 20707

Walter P. Rowe

Robot Systems Division

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards

and Technology

Manufacturing Engineering Laboratory

Gaithersburg, MD 20899

QC

100

U56

#4436

1990

C.2

department of commerce

jrt A. Mosbacher, Secretary

DNAL INSTITUTE OF STANDARDS

TECHNOLOGY
ui i vnn$. Director

NIST

The Depot A Framework for

Sharing Software Installation

Across Organizational and UNIX
Platform Boundaries

Kenneth L. Manheimer

Integrated Systems Group
Factory Automation Division

Stephen N. Clark

Product Data Engineering Group
Factory Automation Group

Barry A. Warsaw

Century Computing, Inc.

1014 West Street

Laurel, MD 20707

Walter P. Rowe

Robot Systems Division

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Manufacturing Engineering Laboratory

Gaithersburg, MD 20899

September 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Kenneth Manheimer - NIST
Barry A. Warsaw - Century Computing
Stephen N. Clark - NIST
Walter Rowe - NIST

The Depot : A
Framework for

Sharing Software
Installation Across
Organizational and

UNIX Platform
Boundaries

ABSTRACT
The depot is a coherent framework for distributing and administering non-OS-
distribution UNIX applications across extensibly numerous and diverse computer

platforms. It is designed to promote reliable sharing of the expertise and disk resources

necessary to maintain elaborate software packages. It facilitates software installation,

release, and maintenance across multiple platforms and diverse host configurations.

We have implemented the depot using conventional UNIX subsystems and resources

combined with policies for coordinating them. This paper presents the specific aims,

structure, and rationale of the depot framework in sufficient detail to facilitate its

implementation elsewhere.

Keywords: Depot , UNIX, sharing, distributed file system, /usr/local, installation,

third-party.

Introduction

Installing and administering third-party UNIX
applications often requires significant investment of

time and expertise, precious commodities in any

organization. Duplicating this investment is usually

not the most efficient way to distribute its benefits.

Instead, it’s much preferable to share the product of

this investment in the form of stable, usable

configurations, provided organizational and platform

discrepancies between different machines can be

overcome. The depot is a systematic organization for

distributing the products of expert application main-

tained ’ efforts in an efficient and unburdensome

manner. The foundation of this system is a general-

ized framework for installation and maintenance of

applications that accommodates distribution across

multiple platforms in a versatile way.

With the greater distribution that this frame-

work provides, reliability and change-release

management become more critical. The depot has

comprehensive provisions to reduce and sometimes

eliminate difficulties inherent in greater operational

interdependencies between hosts.

Depot Objectives

The depot provides a mechanism for distribut-

ing application installations across numerous

machines. In order to be successful, it must accom-

plish this while meeting the following criteria:

• Generality: Accommodate diverse UNIX
operating systems, hardware platforms/ and

host configurations as well as diverse applica-

tion packagings. Commercial, academic, and

public domain packages each come with their

own often elaborate installation methods and

mechanisms and we need to accommodate

them all.

• Robustness: Provide predictable and consistent

services. Formalize procedures for staged

release of new packages and new package

versions.

• Scalability: Provide for incremental addition

and commissioning of applications, clients.

^To date, the depot has been implemented only on

various Sun Workstation architectures, but no essential

mechanisms are Sun-specific. Our implementation makes

extensive use of "conveniences” like Sun’s NIS distributed

administrative databases and Sun’s automount[2], NIS is

becoming universally available, and automount capability

is widely available as anid[3] for many UNIX and some

non-UNIX platforms.

Page 1

'

The Depot . .

.

Manheimer, Warsaw, Clark, and Rowe

and servers to the extent that the underlying

distributed filesystem allows.

• Reliability: Use reliable distribution mechan-
isms and support redundant fallback copies.

• Ease of use: Be easy to commission and

employ. Avoid burdening either application

administrators or users due to depot involve-

ment.

What the Depot Is Not Intended to Do

The aepot is not a project management system.

Although it provides for staging software updates

and releases, it is not intended for, nor is it particu-

larly suited to, multi-agent source modification. It is

best used for distributing software installation and

upgrades, and not for software development itself.

The depot is not intended to replace usual con-

ventions for software sharing but instead refines and

complements their functions. The / us r/ local
directory hierarchy is typically used as a repository

for installing non-core utilities and incidentals.

Often this hierarchy is shared across clusters of hosts

that are similar both in operating platform and in

general organizational configuration and use. With

the addition of the depot, /usr/local can con-

tinue to be used for those items specific to a distinct

homogeneous cluster of machines. Those items war-

ranting broader service across organizational and/or

platform boundaries (and additional intrinsic rigors

of modification and release) belong instead in the

depot.

Depot Motivations

There is useful software that is not included in

UNIX OS distributions.

Typical UNIX-based software development

efforts require programming and other special-

purpose tools that aren’t part of the core OS distribu-

tion. For instance, at our site we use and maintain

our own copies of freely available software such as

the Gnu Project tools[7] and the X Window Sys-

tem[5], as well as numerous homebrew tools

developed locally or floating around Usenet. We
also use various third-party and "unbundled"

software utilities, like commercial databases and

publishing toolkits, that perform functions which are

either not available in core OS distributions or only

provided for in a rudimentary fashion.

Integrating such tools incurs substantial costs in

expertise and other resources.

Expertise is expensive and must be applied

efficiently. Non-OS software products, not delivered

with OS distributions, often demand specialized

expertise to maintain and accommodate them. Even
well produced and packaged commercial products

require disk space and expertise for their manage-
ment. These products must be integrated with, and

maintained in the context of, existing installations,

which may already be specially tailored with diverse

customizations.

Diversity can be an obstacle to sharing.

Large workstation-based computing sites gen-

erally consist of similarly configured subclusters of

affiliated workstations. It is relatively straightforward

to arrange to share distribution OS and other applica-

tions among the similarly configured members of

one of these subclusters. (For example, it’s quite

common to find similar machines sharing network

mounts or duplicates of a /usr/local filesystem

that houses non-core applications.) However, differ-

ences between the configurations of machines in dif-

ferent clusters, or differences in OS revision, vendor,

or hardware platform between machines that are oth-

erwise similarly configured, thwart such direct

approaches to sharing.

In particular, applications that can be prepared

for diverse platforms usually require certain relation-

ships between their executables, libraries, and other

incidentals to be preserved across hosts. For

instance, Gnu Emacs needs to know where to find its

runtime lisp libraries, ancillary executables, and on-

line documentation. More generally, many applica-

tions include runtime dynamically loaded libraries

that need to be located in specific places for the

applications to find them. Ad hoc sharing schemes

developed for specific differences between specific

machines will often fail to extend to other differ-

ences on other machines.

Generalized schemes may provide wider ser-

vice at the expense of greater restrictions on client

configurations. The challenge is to exploit sharing

capabilities without imposing undue complexity or

interference either on the existing individual host

operating environments or on the experts administer-

ing the applications. In general, we don’t want the

savings in duplicated expertise required to manage

the distributed software to be defeated by costs of

accommodating or managing the distribution

methods themselves. A good arrangement can avoid

these pitfalls without compromising the benefits.

What the Depot Really Does

The depot is a network-filesystem based organi-

zation for sharing application installations across

UNIX-based platforms. Most importantly, applica-

tions are easy to install and use from the depot

"Depotized" applications are arranged to be self-

contained and structurally consistent across platforms

so that internal relationships among application com-

ponents are preserved regardless of the organization

or platform of the client hosts. The depot avoids

introducing undue dependencies between applications

and their surrounding operating environments, or

vice versa, and it does not interfere with intrinsic

dependencies already present in an application.

Page 2

Manheimer, Warsaw, Clark, and Rowe The Depot . .

.

Design Overview

Two abstract objectives have crucial influence

over the shape of the depot :

• Provide transparent accommodation of multi-

ple platforms

• Maximize generality; minimize dependence of

depotized applications on the surrounding

operating environment and on each other

Transparent accommodation of multiple

platforms is accomplished by mapping from pan-

platform server arrangements to platform-specific

client arrangements.

While some third-party application packages

accommodate multiple platforms with a single instal-

lation, most do not. Multi-platform installation and

employment could be taken care of separately with

platform-independent scripts. However, such scripts

do not normally generalize from application to appli-

cation. Indeed, it’s difficult to arrange for the same

script to take care of both installation and employ-

ment of even a single application. Depot structural

arrangements instead transform an internal pan-

platform arrangement of an application on servers to

a public platform-specific arrangement on clients.

Separate directories are allocated in the pan-

platform arrangement for the platform-specific por-

tions of an application. Clients mount the entire

pan-platform arrangement and then overmount the

correct platform-specific components in a slot set

aside for that purpose. Since the platform-specific

components are effectively organized in the same
way for all platforms and the platform-independent

components are shared between all platforms, each

client sees the same structural organization regard-

less of its platform. Only the platform-specific files

themselves are different. This arrangement, as far as

the client is concerned, looks like a configuration

suited for installation and employment of the appli-

cation on the client’s own platform.

Arranging for simple mount schemes and
minimizing dependence between depot applica-

tions and their operating environments dictates

strong emphasis on self-containment.

Interdependencies between an application and

its operating environment complicate the job of mak-
ing the application widely available across diverse

environments. In order to minimize this complexity

we keep the arrangement of an application installa-

tion very self-contained. This self-containment is

essential to avoid imposing unnecessary burdens on
clients or application maintainers who use the depot.

Dependencies of an application’s installation on the

structure of a client’s operating environment are kept

to a minimum, and, conversely, the depot design

strenuously avoids imposing restrictions on the

client’s operating environment.

2

y
Note that depot packagings for an application may

Each depotized application is contained within

a single directory hierarchy. The contents may be

composed from mounts of scattered filesystems/ but

they collectively look like a single hierarchy. The

collection of depot applications is likewise contained

within a single directory hierarchy. Those com-

ponents that an application intrinsically requires to

be established elsewhere in the operating environ-

ment are represented in the external locations by

symbolic-link proxies that point to the actual com-
ponents in their locations within the depot hierar-

chy.4 (These links should be created by a script

prepared as part of the process of incorporating an

application into the depot, to ease commissioning of

new clients.)

Implementation

The root of the depot hierarchy is located in the

same place on clients and servers. All of the paths

configured into depotized applications are prefaced

by the path of the hierarchy’s root, so a short one is

preferable. We have our depot root located at

/ depot.

A depot installation of an application has two

principal aspects: the arrangement of disk storage for

the pan-platform components of the application, and

the public interface to it. The platform-specific pub-

lic interface is implemented on every client that sub-

scribes to the depot, and we will refer to it as the

"client view". The client view is composed, using

NFS mounts, loopback mounts, or symbolic links,

from the pan-platform arrangement, which we will

refer to as the "origin view".

A host that serves as an origin for an applica-

tion (or for a piece of it) usually also makes use of

the application as a client and so employs both ori-

gin and client views. (The converse, however, is not

true: the majority of clients do not serve as applica-

tion origins.) Together with the mechanisms that we
use to compose the client view from the origin view,

this requires the depot location of the client view to

be different from the depot location of the origin

view.

include shortcuts that involve nonessential client

dependencies, just so long as their functionality is

available in other, non-constraining ways.

^For instance, sometimes filesystem service of an

application’s platform-specific components is distributed

among different hosts, with each host serving only the

components which are specific to its own platform.
4X11 under SunOS 4 contains an example of an

application with components that need to be located

outside of the depot hierarchy. Xterm depends on a

dynamic library which must be located in either

/usr/lib or /usr/local/lib for setuid-

authorization purposes.

Page 3

The Depot . .

.

Manheimer, Warsaw, Clark, and Rowe

We will first detail the arrangement of the ori-

gin view. Next, we will describe the public interface

provided by the client view, and finally, the mapping
from the origin view which is used to implement the

client view.

The Origin View

The origin view contains all of an application’s

components, including a single copy of each of the

platform-independent components and a copy of

each of the platform-dependent components for each

of the supported platforms. It is not intended, how-
ever, to be directly usable for either installation or

execution of the application - this is the role of the

client view.

Within the depot root, application origins are

located in subdirectories whose pathnames begin

with either /depot/
.
primary or

/depot/ . develop/5 These two directories differ

only in the way they are used; their internal organi-

zations are identical. Fully released, in-service appli-

cation copies are situated in .primary directories.

The .develop directories provide private, tem-

porary work areas in which to perform depot appli-

cation builds or experiment with changes without

affecting other users. (See "Isolating Release

Preparations for Upgrades" below for more details.)

Figure 1 shows a portion of the origin arrange-

ment of a fictional application named anApp. Each

box represents a directory (or collection of direc-

tories, in the case of the boxes containing ellipses).

Sibling directories on the path above

/depot / . primary/ anApp are ignored.

• The src directory contains the source distri-

bution for anApp.

• The include and lisp directories are typi-

cal examples of subdirectories containing

platform-independent components.

• The arch directory is a stub necessary for

^The dot V prefixes are not so much for the ostensible

(and rather thin) UNIX purpose of "hiding" these

directories, but rather for the sake of distinguishing them

from the other contents of the directory by clustering them
together at the front of Is listings.

use in constructing the client view.

• arch . sun3-os3, arch . sun4-os4, and

arch. sun386-os4 are typical examples of

directories which contain platform-specific

components. They commonly have subdirec-

tories bin (for public executables) and lib
(for public and internal object libraries).

It is common to have separate lib directories

for platform-independent and for platform-dependent

components. The platform-independent lib might

contain ASCII text files like default and "rc"

configuration files, skeleton fiies for code generators,

etc., while the platform-dependent lib would hold

object code libraries and byte-order-sensitive files

like fonts.

The name of each platform-specific directory

distinguishes the platform to which it belongs. It is

only necessary to distinguish between fundamental

OS, hardware executable format, or byte-order

incompatibilities.

Each platform -specific directory name starts

with the prefix "arch."6 The next few letters indicate

the hardware architecture of the supported platform.

Finally, the string "-os" is concatenated with a string

that indicates the supported operating system. Thus,

for example, arch. sun4-os4 denotes the direc-

tory for software specific to Sun SPARC ("Sun4")

architectures running SunOS 4.

Depot servers need to grant at least remote

read-access privileges for clients to mount the origin

directories. Since compilation and installation are

done within the client view, clients used for depot

administration must have read/write privileges. We
use "read-mostly" 7 together with root-access designa-

tions to grant suitable privileges to the specific

clients that will be used for building while restricting

all other clients to read-only. This assures that only

authorized clients can be used to make changes to

the applications.

The Abstract Client View

A client view of an application is a platform-

specific arrangement employed for both administra-

tion and public use of the application on a particular

machine. Composed from the pan-platform origin

view using NFS mounts, loopback mounts, or sym-

bolic links
, in the abstract the client view looks like

a dedicated installation of the application for its host

platform.

All path references for the application, whether

for internal configuration or for public access, use

paths dictated by this abstract arrangement. Thus it

provides both the public interface to the application

and the internal interface between its components.

'’’"arch." is a holdover from early depot days; "plat." or

"platform." probably would have been more appropriate.
7SunOS exportfs (8) man page[l].

Page 4

Manheimer, Warsaw, Clark, and Rowe The Depot . .

.

Figure 2 - Abstract Client View of anApp

The Origin-Client Mapping

The mapping between the origin view and the

client view is the crux of the depot scheme. The

client view is composed by mounting the server

arrangement and then overmounting the suitable

architecture onto the empty arch directory. In the

absence of automount and loopback mounts origin

servers can use symbolic links to achieve this client

mapping locally. (The implementation of the map-
ping is explained in detail in "Implementing the

Ghent View", below.)

Using our example, the anApp root origin

v/ould be /depot /. primary/anApp on some
host. This origin is mapped to /depot /anApp on

the client. Next, the particular

/depot /
.
primary/anApp/arch . <arch>-

<os> directory suited to the client platform is

mapped to the /depot /anApp/arch stub direc-

tory, provided specifically for this purpose. As a

result of this mapping the arch directory on the

client effectively contains the platform-specific com-
ponents of the application required by the client’s

platform.

The resulting arrangement on the client is illus-

trated in Figure 3. It shows the typical arrangement

of a depot client, including the location of the origin

root directory on those clients that also serve as

anApp origins. Each directory is represented by a

box whose shading indicates the role it plays in the

arrangement and in the mapping.

• Plain Local (/depot) are regular directories

in the root of the local file system.

• Local, only on Origin servers (.primary,
.develop) are directories that are present on

clients only if they happen to be origin

servers. ("The Origin View" section, above,

details their contents.)

• First Redirects (anApp and its subdirec-

tories) are established by a mount of or link to

the root directory of the anApp application on

the origin server

(/depot / . primary/anApp).
• Overlaid Redirects (arch and its subdirec-

tories) are established with a second mount
from the anApp origin hierarchy onto the

empty arch directory. The mount maps the

particular platform-specific directory for the

host (in this example, arch . sun4-os4) into

the arch directory of the client view.

• Other Redirect Stubs (XI 1, yAp, zAp,

. . .) are shown simply to illustrate that

clients may subscribe to numerous applica-

tions. Structural details are not shown but

would follow the same principles illustrated

by anApp.

/depot

(i.e., Vdepot/anApp/src/”)

.develop *

< .primary :

include

arch.sun4-os4

arch.sUfi386-bs4

Directory Types:

Plain Local Local, only on
' Origin Servers

First

Redirects
Uli Overlaid

Redirects

[”] Other Redirect Stubs

Figure 3 - Origin/Client Mapping of anApp on a Sun4-os4 Host

Page 5

The Depot . .

.

Manheimer, Warsaw, Clark, and Rowe

As mentioned above, the only important

arch* directory in the client view is arch. This

directory effectively contains the platform-specific

components of the application, and the

arch.<arch>-<os> directories are ignored.

Both application configuration and public refer-

ences to application components should resolve to

the arch directory. Public access to any platform-

specific components should either refer directly to

/depot /anApp/arch subdirectories or get to

them via symbolic link proxies. In this way diverse

clients use what appears to be the same structure to

resolve both platform-dependent and independent

application components, and both installation and

employment of an application use the same paths

regardless of the client’s platform.

Implementing the Client View

Sun’s automount significantly simplifies imple-

mentation of the origin/client mapping.5 It provides

the means to systematize and distribute mount
configurations via a networked administrative data-

base (NIS). It also accounts for special requirements

of hosts that serve as both origins and clients of an

application. In Appendix I we include a representa-

tive automount map to help illustrate how to use

automount for depot purposes. Below we detail the

non-automount procedure for implementing our

anApp example, both for the sake of clarifying the

origin/client mapping and to show how to implement

it when automount won’t be used.

We’ll use the syntax of Sun utilities for our

example. The Sun4 host honcho running SunOS
4.1 will serve the application anApp hui.. ihe origin

directory honcho : /depot / . primary/anApp.
(anApp's directory structure on honcho would look

much like the skeleton exhibited in Figure 1.) The
Sun3 client guppy, running SunOS 4.0.3, would
compose its client view of anApp with the following

two lines in guppy: /etc/

f

stab:9

honcho
: /depot/ .primary/anApp \

/depot /anApp nfa rw 0 0

honcho : /depot/ .primary/anApp/arch . aun3-oa4 \

/depot/anApp/arch nfa rw 0 0

It is usually necessary to implement client

views on origin servers, and some implementations

of NFS are prone to serious failures when mounting
from a server to itself. Loopback mounts under

SunOS 4 are one solution to the problem. If they are

available, loopback mounts can be used to establish

the client view on the origin server by using fstab
lines like those above but replacing each occurrence

o

Although our implementation uses automount, amd also

seems to be at least sufficient for our purposes.

^Note that Sun’s mount does dependency analysis before

processing mounts, so these hierarchical mounts pose no
problem.

of "n£s" with "lo".^
0 Symbolic links can be used

instead to implement this arrangement in another

way. Here are the appropriate link commands for

this method:

In -s /depot/ .primary/ anApp \

/depot /anApp

In -s /depot/ .primary/anApp/arch . 8un3-oa4 \

/depot/ anApp/arch

The first link simply creates a redirection from
the client view /depot /anApp directory to the

application origin at /depot/ .primary/anApp.
The second link creates a redirection from the client

view /depot/anApp/arch directory (which is

identically the origin view directory

/depot /. primary/anApp/arch, as a result of

the previous link) to the platform-specific origin

directory

/depot/
.
primary/anApp/ arch . sun4-os4.

Note that if the platform-specific stub,

/depot/ .primary/anApp/arch, already

exists, the second link will not be properly created,

but will instead be placed inside this stub directory.

There is a somewhat obscure complication in

the link scheme which turns out not to be a problem

but which bears explaining nonetheless. Since the

second link is actually established in the origin view

as the arch redirection, it’s seen by all clients that

mount this filesystem. The question is how this

affects a client that uses mount to redirect the arch

directory (in this case the link) to the appropriate

platform-specific directory.

Since the link is resolved at mount time, the

desired arch.<arch>-<os> directory is mounted
over whichever platform-specific directory this link

points to. The arch link is therefore not covered by

the mount, and points to the overmounted

arch.<arch>-<os> directory rather than the sha-

dowed (covered) one. Therefore references within

the arch hierarchy resolve to the desired

arch.<arch>-<os> platform-specific com-

ponents.

Automount-based implementations will also

cooperate correctly with origin/client links, so all

three methods can be used in parallel without

conflict.

Using Origin Redundancy to Increase

Reliability of Depot Services

Application origin directories can reside on any

fileservers and they can be divided between combi-

nations of fileservers. By establishing alternative

copies of entire origin hierarchies we provide the

basis for both staged release of software upgrades

^°Loopback mounts must be last in /etc/ fstab; see

the warnings section of the SunOS 4 mount(8) man
page[l].

Page 6

Manheimer, Warsaw, Clark, and Rowe The Depot . .

.

and fallback redundancy to increase reliability by

reducing critical points of failure.

Multiple .primary Origins Provide Redundancy

By creating multiple .primary origin hierar-

chies for crucial applications we are able to achieve

distributed loading of the origin servers and, perhaps

more importantly, provide fallback service in the

event of a fileserver failure.

Since there are multiple servers for complete

origin copies, a client will have alternates from

which it can get the software if an origin server goes

down. At worst a client will need to reboot to free

itself from a locked-in mount. (A mount can become

locked in when an active executable can’t be com-

pletely terminated because it’s hanging on a disk

read from the defunct filesystem.) Once the client is

freed it can redirect its mounts to surviving alternate

servers. With automount the rebinding process is

automatic, though locked-in mounts may prevent

rebinding, so that reboot may sometimes still be

required.

Isolating Release Preparations for Upgrades

For tools that are perpetually in use, like Emacs
and X, it’s important to minimize down time. The
building and testing phases inherent in controlled

releases of new versions can be time consuming. By
arranging for a client to use its own copy of an

application origin the release can be thoroughly

prepared in isolation.

Using one of multiple .primary origins is

not suitable for this purpose. Publicly enlisted alter-

nate .primary’s must be kept synchronized and it

is awkward (and usually undesirable) to quickly

remove a publicly enlisted origin from service.

Instead we establish distinguished

/depot /. develops copies specifically for

preparing the release, doing the build and testing in

isolation from the rest of the world. Once the release

is prepared it is announced and migrated as a whole

to the .primary’s. (The .develop versions can

then be deleted, although they may be useful as

placeholders to reserve disk space for the next

release cycle.)

Some Incidentals on Implementing Redundancy

We use a special automount map akin to the

Sun "-hosts" map that allows us to see the entire

origin structure of all servers to facilitate copying

the contents of the .develop origins to the

corresponding .primary origins. This is especially

useful when we use multiple .primary origins for

an application to provide redundancy.

Another holdover from initial development which

unfortunately implies something other than what we mean.

This might more appropriately be called something like

.aside or .scratch.

We have resolved some formal policies about

management of the .primary and .develop
application origins in order to facilitate cross-

divisional use of the depot. Most importantly, multi-

ple .primary origins for an application are

guaranteed to be held as consistently identical as can

be managed. This is necessary to ensure that clients

can rely on identical service from any of the .pri-
mary copies of the application. It is crucial when
using automount with multiple primaries because

automount does not necessarily use the same host for

first redirects and overlay redirects, and will com-

bine platform-independent and platform-specific

components of an application from separate servers.

Also, it’s important to identify managers for

each application who will at least coordinate addi-

tions and upgrades to it. We stipulate that any

changes of applications must be arranged with the

designated application administrator, and any poten-

tially disruptive releases to .primary origins

should be done with the direct involvement of the

administrator. Furthermore, as with any system

changes that impact users, any potentially disruptive

changes should be scheduled to the satisfaction of

the range of clients using the applications.

Results

We have been developing the depot for about a

year now and have been using it in near final form

for the last half year. Its use spans two major organi-

zational divisions of our laboratory, and will soon

include a third. We use it to serve numerous applica-

tions to a contingent of more than one hundred

workstations, at one point including seven distinct

operating "clusters", nine comprehensive file servers,

and three major OS versions.

Most dramatically, both divisions have a larger

repertoire of better maintained utilities thanks to

their availability through the depot. We use major

research and academic programming tools including

X, NeWS, Gnu, Interviews, and Usenet news facili-

ties, and numerous commercial products including

FrameMaker, Saber-C, Parasolid, Hoops, and Allegro

Common Lisp. We have consistently maintained an

up-to-date repertoire of all of these tools across two

major OS releases (Sun OS 3.5 and 4.0/4. 1) and

three different hardware architectures (Sun-3/68020,

Sun-386i, and Sun-4/SPARC) with only a single cen-

tral administrator for each application (two for Gnu -

one for Emacs and one for the rest) providing ser-

vice for both divisions.

Redundant origin hierarchies are big wins. By
dedicating some disk space to additional origin

hierarchies, reliability can clearly be enhanced well

beyond what would be available with a single origin.

In the case where multiple clusters are sharing ser-

vices, redundant hierarchies may not even require

extra disk space - it is likely that each cluster

already maintains its own copy of an application, so

Page 7

'

The Depot . .

.

Manheimer, Warsaw, Clark, and Rowe

that all that is required is to implement depot discip-

lines on the various hosts.

The consistency of depotized application distri-

bution makes one copy interchangeable with another,

while separately managed versions usually are not

trivially interchangeable for the reasons cited above

(see "Diversity can be an obstacle to sharing").

Large groups of clients can be served by relatively

few copies, so the returns improve up to some fairly

high server or/and network loading (or even connec-

tivity) saturation point as scale increases.

By establishing duplicate primaries for impor-

tant depot applications on mutually independent

cluster servers we’ve achieved much better uptime.

In particular, because of the immediate interchangea-

bility of the duplicated applications, we can have

one server off-line (either intentionally or due to a

system failure) and only those machines dependent

on boot services or on applications not incorporated

into the depot are incapacitated. During four

separate major system failures over the past year we
reduced what would have been down-time for some

major applications (X, Emacs, FrameMaker) for at

least thirty machines (and up to sixty machines,

depending on which division’s machine was hit) to

down-time for only a maximum of ten dependent

boot-clients. Coasidering that the repairs on one of

those occasions stretched out to over a week, that

constitutes a major reduction in lost work-hours.

Perhaps the most outstanding sign of the suc-

cess of the depot is the degree to which the respec-

tive divisions’ managements allow this cross-

dedication of talent to each other’s facilities. We feel

that the only reason we are able to "get away" with

this is because they recognize, as do we, that we’re

all getting more comprehensive and thorough service

with less invested effort and greater ease of use than

we did prior to the commissioning of the depot. And
that was while we were still developing it . .

.

Summary

The depot provides a framework for installing

arbitrary software, including third-party and custom

applications, to accommodate diverse platforms. The
structural arrangement of an application's installation

is consistent from one platform to another, allowing

the same usage and installation path across plat-

forms. Applications pre-packaged with multi-

platform accommodations are simply installed

without fuss. Commissioning an application’s depot

installation requires no more finagling than does

adapting multiple copies of the same configuration

for installation on multiple standalone machines, and

usually requires less effort if the standalone

machines don’t happen to be identically arranged.

All components of the depot except for the

inherently public application components (the user

interface) are confined to a single directory hierarchy

on any client’s file system. Simple relationships

among the actual installed components hold regard-

less of the host file system environment. Even the

external interface is implemented as a simple, repro-

ducible, and platform-independent entity. Thus com-
missioning an application in the depot usually entails

establishing a small set of filesystem mounts, estab-

lishing the application-mandated hooks if any,

optionally establishing symbolic link surrogates for

the external interface for access, and creating a

script to automatically create all of the necessary

external links identified in this process (this is to

ease the commissioning of new clients). This almost

always winds up being even simpler and cleaner

than it sounds.

The consistent organization of depot sharing

allows redundancy to be used directly to increase

reliability. As scale increases the returns increase, up

to the saturation point of the media (fileserver hosts,

NFS, and/or network).

It is important to note potential problems that

the depot avoids. It depends only on conventional

UNIX utilities and imposes minimal overhead on the

application servers, maintained, users, and client

systems, providing a robust basis for multi-platform

support of diverse utilities. It does not interpose

clumsy interfaces for installing or accessing

platform-specific components of an application, rely-

ing instead on remounts which are almost entirely

transparent to both application management and the

user clientele.

Unresolved Issues and Other Work

• Applications with installed components that

are not strictly partitioned from their source

distribution require extra finagling for installa-

tion in the depot. For instance, Xllr3’s

imake[6] mechanism required some extra

effort in order to establish this partitioning,

though Xllr4 has solved that problem with

the introduction of xmkmf. Gnu Emacs also

exhibits the problem. It uses the distribution

etc directory for ancillary executable com-

ponents that are necessary both for build and

operation of the application. It is necessary to

build some custom scripts in order to imple-

ment the partitioning for Gnu Emacs. We
think it may be reasonable to consider this

partition between source distributions and

built releases as one criteria of a "good" ins-

tallation mechanism, but have to evaluate this

further.

• We need to implement the depot on other

non-Sun machines. While we have small

numbers of various other UNIX platforms

around, including Silicon Graphics, DEC, and

IBM, none of the active depot development

personnel are responsible for those machines.

Now that we have reached a fairly stable

Page 8

*

Manheimer, Warsaw, Clark, and Rowe The Depot . .

.

framework we intend to branch out a bit.

• We need to investigate newly available tech-

nologies, e.g. "translucent" file systems[4],

and evaluate how we can use them to improve

on the simplicity and transparency of the sys-

tem.

Acknowledgments & Disclaimer

This work was jointly funded by the NIST
Automated Manufacturing Research Facility (AMRF,
project 734-3385) and Scientific and Technical

Research Services (STRS, project 734-3106).

The depot scheme was initially conceived and

designed by Ken Manheimer. Barry Warsaw and

Ken refined the initial design. Barry implemented a

prototype layout and Ken implemented the initial use

of the overmounting scheme. Barry and Steve Clark

developed specific methods for managing the Gnu
software package as a whole. Walter Rowe did some

similar work for sundry X tools. The initial layout,

along with the conception of the depot in general,

was further refined and resolved by the concerted

efforts of all of the authors.

We are indebted to our collective management
and to our numerous users in the Factory Automa-

tion Systems Division and the Robot Systems Divi-

sion at NIST, who on numerous occasions had to put

up with the growing and shaking-out pains of the

progressively developing system. In particular,

thanks to Scott Paisley, another local system

manager, for valuable input and assistance, and to

local guru Don Libes, who provided important criti-

cism and insight while we were developing the depot

and who encouraged us to submit and write this

paper. (He was also the only person who had the

guts to read early drafts of this paper.)

No approval or endorsement of any commercial

product by the National Institute of Standards and

Technology is intended or implied.

Appendix • A Representative Automount Map

The automount fragment depicted in Figure 4

illustrates some nuances of Sun’s automount
,
partic-

ularly the combination of hierarchical mounts and

alternative servers for a common hierarchy.

Note that hierarchical automounts composed
from alternative servers can be and often are realized

with components from both servers. For example, it

is not unusual to find the /depot /gnu directory

mounted according to the above fragment to come
from the host imp and the /depot /gnu/arch
directory to be mounted from dip. For this and

other reasons it is imperative that the alternative ori-

gins be held in strict synchronization.

References

[1] Sun Microsystems Incorporated, SunOS 4.1

Reference Manual.

[2] Sun Microsystems SunOS 4.1 System Adminis-

tration Guide or SunOS 4.03 System Adminis-

tration Addenda is an essential supplement to

the man pages.

[3] Jan-Simon Pendry, "Amd - An Automounter",

Department of Computing, Imperial College,

London, England, 1989.

[4] Sun Microsystems Incorporated, "TFS”, SunOS
4.1 Reference Manual , Vol 2, p. 1494.

[5] Scheiffler, R.W. and J. Gettys, "The X Window
System", ACM Transactions on Graphics Vol. 5,

No. 2, April 1986, pp. 79-109.

[6] Jim Fulton, "Configuration Management in the

X Window System", The MIT X Consortium,

MIT, Cambridge, MA. 1989.

Note: We *cannot* include entries that cause a

dir to go on top of itself.
#target root
#

dir/opts <Sys>:<path> origin
7T

/depot /autotabs / -ro elf : /depot/ .primary/autotabs
/depot /sundry / elf : /depot /. primary/ sundry \

/arch elf : /depot/ .
primary/ sundry/arch . sun3-os4

/depot /X / imp : /depot /. primary/X \

dip : /depot /. primary/X \

/arch imp : /depot /
.
primary/X/ arch . sun3-os4 \

dip : /depot/ .
primary/X/arch . sun3-os4 \

/src dip : /depot/ . develop/X/src
/depot /gnu / dip : /depot/ .

primary/gnu \

imp : /depot /. primary/gnu \

/arch dip : /depot/ .
primary/gnu/arch . sun3-os4 \

imp : /depot/ .
primary/gnu/arch. sun3-os4

Figure 4 - Automount Fragment

Page 9

The Depot . .

.

Manheimer, Warsaw, Clark, and Rowe

[7] Available from The Free Software Foundation

of Cambridge, Massachusetts, further informa-

tion is available via electronic mail on the Inter-

net from gnu@prep.ai.mit.edu.

Ken Manheimer works as

UNIX Systems Support

Manager in the Factory Auto-

mation Systems division at

National Institute of Standards

and Technology, where he has

shepherded the growth of his

divisions UNIX computing from

four Sun l’s (and Eunice on a

VAX) to seventy+ UNIX sys-

tems. He received a B.A. in

Computer Science from Hampshire College. Reach

him at NIST; Bldg 220, Rm A 127; Gaithersburg,

MD 20899 or electronically at klm@cme.nist.gov.

Barry A. Warsaw has just

recently joined Century Com-
puting, Inc. as a Data Systems

Engineer, where he will be

working on an online retrieval

system for the National Library

of Medicine. Formerly with

NIST, he was at times system

manager for the Robot Systems

Division network of UNIX
machines, and developer of user

interfaces for robotic and automated machine control

systems. He received a B.S. in Computer Science

from the University of Maryland. Reach him at

Century Computing; 1014 West Street; Laurel, MD
20707 or electronically at baw@fox.gsfc.nasa.gov.

Stephen N. Clark has never

been a system administrator in

his life, falling instead into the

amorphous category of

"knowledgeable user." He is

currently working on tools for

building schema-driven applica-

tions in support of the National

PDES Testbed at NIST. He
received an Sc.B. in Math and

Computer Science from Brown
University. Reach him at NIST; Bldg 220, Rm
A 127; Gaithersburg, MD 20899 or electronically at

clark@cme.nist.gov

.

Walter Rowe is currently the

System Administrator for the

Robot Systems Division of the

NIST, where he maintains a

network of 30 Sun workstations.

He received a BS in Computer
Science from Tennessee Tech-

nological University and is

currently working on a MS in

Computer Science at the Johns

Hopkins University in

Gaithersburg, Maryland Reach him at NIST; Bldg

220, Rm B124; Gaithersburg, MD 20899 or electron-

ically at rowe@cme.nist.gov

.

Page 10

NiST-i 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION OR REPORT NUMBER

MTSTTR '

2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

SEPTEMBER 1990 1

4. TITLE AND SUBTITLE

The Depot: A Framework for Sharing Software Installation Across Organizational and
Unix Platform Boundaries

5. AUTHOR(S)

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

The depot provides a coherent and accomodating framework for distributing and administering
nonstandard Unix applications across extensibly numerous and diverse computer platforms.
It is designed to promote sharing of expertise and disk resources necessary to maintain
elaborate third-party applications, supplementing the utility of ad hoc/usr/local arrangement!
in a formal scheme that allows extension across non-homogeneous clusters of hosts. In

particular, it facilitates software installation, release, and accomodation across multiple
j

platforms and diverse host configurations.

We have implemented the Depot using conventional Unix subsystems and resources combined with
j

policies for coordinating them. This paper presents the specific aims, structure, and
rationale of the depot framework in sufficient detail to facilitate its implementation
elsewhere

.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY W^RDS BY SEMICOLONS)

Depot, Unix, sharing, distributed file system, /usr/local, installation, third-party

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNLIMITED
13

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

15. PRICE

AO 2

X— ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM

